If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-18x-1=0
a = 81; b = -18; c = -1;
Δ = b2-4ac
Δ = -182-4·81·(-1)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{2}}{2*81}=\frac{18-18\sqrt{2}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{2}}{2*81}=\frac{18+18\sqrt{2}}{162} $
| 13.80=23.50+2/5x | | 6x-6/4=-6 | | 22=k/2 | | 1/4x−3=1/2x+12 | | -2n(n+3)=-10 | | a^2-28a-30=0 | | t-6=-13 | | 2x÷18=89×2 | | 6(3x-4)=+2x | | 2(x-7)/4=8 | | 9(4x-2)=+2x | | 1/4(4x-8)=-x+8 | | 2x÷18=89x2 | | 130=280+b | | y=10.4(2.44) | | -12=2x-12 | | m÷2=8 | | 7x-11-2x-12=5(4x-4) | | /y–18=21 | | -12-3=3h+9-9h | | 7+8.61=y | | 9.6x-15.4=-4.3x+26.6 | | 5x-2-11-4x=4(4x-1) | | y-6.8=14.7 | | 2(n=3)=-10 | | 4(-5x-3)-(-5)=13 | | 6p-2p-8=-2+4 | | 5(3x-5)-2x=-5 | | 8x24= | | 6p−2p−8=−2+4 | | 280+b=130 | | 3b+15=7b-213b+15=7b−21 |